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Abstract
Small-polaron behaviour in a two-dimensional honeycomb net is studied by
applying the strong-coupling perturbative method to the Holstein molecular
crystal model. We find that small optical polarons can be mobile also if the
electrons are strongly coupled to the lattice. Before the polarons localize and
become very heavy, there is in fact a window of electron–phonon couplings
in which the polarons are small and have masses of order �5–50 times the
bare band mass according to the value of the adiabaticity parameter. The two-
dimensional honeycomb net favours the mobility of small optical polarons, in
comparison with the square lattice.

1. Introduction

The transport properties of real systems are strongly affected by the presence of nonlinear
potentials in the lattice [1–3]. Nonlinearities may arise because of embedded impurities in
the host lattice which favour trapping of the charge carriers [4–7] in any dimensionality [8]
or nonlinearities may be intrinsic to the system and driven by the electron–lattice interaction
as assumed in the molecular crystal model first proposed by Holstein [9] in the form of a
discrete nonlinear Schrödinger equation for electrons coupled to harmonic phonons. Several
theoretical methods have been developed in the last few decades [10–19] to analyse the ground-
state and finite-temperature properties of the unit comprising the electron plus the surrounding
local lattice deformation, namely the polaron. Central to these investigations is the concept
of self-trapping traditionally denoting a transition between an infinite-radius state at weak
electron–phonon coupling and a finite-radius polaron at strong e–ph coupling. The narrowing
of the polaron band and the abrupt increase of the polaron effective mass versus e–ph coupling
are the classical and related indicators of the transition event which may occur or not according
to the degree of adiabaticity and the dimensionality of the system. When the characteristic
phonon energy ω̄ becomes larger than the electronic bandwidth, the antiadiabatic regime is
attained. In this case it is generally accepted that the polaron wave function spreads over a
few lattice sites (small polaron) with the polaron mass being a smooth function of the e–ph
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coupling. Instead, the polaron self-traps in the adiabatic regime and there is growing evidence
that this event takes place in any dimensionality [15, 19, 20].

When the lattice polarizations is confined to one or a few unit cells the carrier feels the
details of the local structure: recent generalizations of the Holstein model have shown that
the inclusion of on-site lattice anharmonicity can substantially modify the size [21] and the
mass [22] of the polaronic quasiparticle. While these findings could contribute to locating
with more accuracy the self-trapping event in parameter space, it is still unclear whether and
how the transition depends on the lattice structure. To address this problem we focus here on
the polaron mass renormalization in a two-dimensional honeycomb net which can be viewed
as a triangular Bravais lattice with a basis of diatomic molecules at the vertices. The Holstein
model is briefly reviewed and the results are discussed in section 2. The conclusions are drawn
in section 3.

2. The Holstein model Hamiltonian

The Hamiltonian for the single electron in the Holstein model reads

H = −t
∑
i �=j

c
†
i cj + g

∑
i

c
†
i ci(ai + a

†
i ) +

∑
k

ωka
†
kak (1)

where the dimension dependence explicitly appears in the momentum-space Hamiltonian for
the harmonic lattice vibrations. c†

i (ci) creates (destroys) a tight-binding electron at the i-site
and t is the first-neighbour hopping integral related to the bare electron half-bandwidth D

by D = zt , z being the coordination number. a
†
k (ak) creates (destroys) a k-phonon with

frequency ωk. g is the overall electron–phonon coupling constant.
In the strong-coupling regime the Lang–Firsov approach [23] is reliable [24, 25] and the

polaron mass m∗ can be obtained via a perturbative method. In d dimensions the ratio between
m∗ and the bare band mass m0 is [20](

m∗

m0

)
d

= exp(ḡ2)
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N

∑
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.

(2)

The series expansion in the last of equations (2) reflects the fact that the second-order
polaron self-energy comprises the emission and absorption of an arbitrary number of phonons;
hence it is a sum over an infinite number of diagrams each having s phonons between the two
interaction vertexes. The second order of perturbative theory also introduces the effect of the
adiabaticity parameter zt/h̄ω̄ on m∗ which, in general, depends on dimensionality through:
(i) g2 ∝ d , (ii) the first-neighbour number z, (iii) the Brillouin zone sums and (iv) the features
of the phonon spectrum.

We take a 2D honeycomb net equivalent to a triangular lattice with a two-point basis.
Each lattice site is a diatomic molecule with coordination number z = 6. Hence, the phonon
spectrum has both acoustic and optical branches whose analytical expressions can be deduced
by means of a force constant parametrization scheme:

ω2(kx, ky) = β + 3γ

M
± 1

M

√
β2 + γ 2H(kx, ky) + βγG(kx, ky)

H(kx, ky) = 3 + 2(cxcy + sxsy + c3xcy + s3xsy + c2x)

G(kx, ky) = 2(2cxcy + c2x)

(3)
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with: cx = cos(kx
√

3a/2), cy = cos(ky3a/2), c2x = cos(kx
√

3a), c3x = cos(kx3
√

3a/2),
sx = sin(kx

√
3a/2), sy = sin(ky3a/2), s3x = sin(kx3

√
3a/2). a is the lattice constant and

M is the reduced molecular mass. β and γ are the intramolecular and intermolecular force
constants respectively in terms of which one defines: ω2

0 = 2β/M , ω2
1 = γ /M and the

zone-centre optical frequency ω̄ =
√
ω2

0 + zω2
1.

Previous investigations of the Holstein Hamiltonian [26] have shown that the
intermolecular forces have to be sufficiently strong in order to predict the correct polaron
bandwidth trend versus dimensionality. Thus the ground-state properties of the Holstein
model essentially depend on the strength of ω1 which should be of order �ω0/2. When this
condition is fulfilled the polaron mass turns out to be substantially dimension independent.
Larger ω1-values are admitted in the model although they encounter the obvious upper bound
ω1 � ω0 in a molecular lattice. This result (which has been proven in a large portion of
parameter space ranging from fully adiabatic to antiadiabatic conditions) introduces a novel
feature in the polaron landscape corroborated by Monte Carlo simulations [27], density matrix
renormalization-group studies [15] and variational approaches.

Two quantities play a central role in polaron theory. The first, defined by

λ = Ng2

/(
D

∑
k

h̄ωk

)

(N being the number of molecular sites), represents the ratio [28] between the polaron binding
energy and the electronic half-bandwidth. It yields the energetical gain due to small-polaron
formation with respect to the bare electronic state. The second, defined by

α = Ng

/(∑
k

h̄ωk

)

measures the lattice deformation associated with the quasiparticle formation. While in
adiabatic systems the condition λ > 1 signals the existence of the small-polaron state, in
antiadiabatic systems α > 1 is a more restrictive condition for small-polaron formation [29].

Recent analysis [30–32] on the mobility of small polarons also in conjunction with models
on polaronic high-Tc superconductivity [33–35] have led to reconsideration of the concept of
self-trapped state which, although intimately related to the small size of the quasiparticle, is
not synonymous with the small-polaron state. Thus, if the narrowing of the polaron bandwidth
(induced by an increasing e–ph coupling) marks the onset of the transition between large and
small states, there is still a range of g-values for which the polaron, although spread over a few
lattice sites only, is not trapped and retains mobility properties. The self-trapping event can
be instead associated with a rapid but continuous effective-mass increase which is precisely
located by looking at the curvature of the logarithm of the effective mass versus g. In our view
this method, beyond embodying the full physical significance of the transition process, offers
a simple criterion for selecting a ‘critical g-value’ as an inflection point either in the logarithm
of the effective mass or in its first derivative. While the former case would identify the point
of most rapid increase of the effective mass, the occurrence of the latter case distinguishes a
peculiar point in the mass versus g plot although the concavity–convexity change is absent.

In figure 1(a), four plots of the polaron mass (in units of the bare band mass) as a function
of the g-coupling are reported, while the corresponding curvatures of the logarithm of the mass
are shown in figure 1(b). High optical phonon frequencies are assumed. Our selected plots
range from an extreme adiabatic (t = 200 meV) to a moderately antiadiabatic (t = 10 meV)
regime. At a fixed g the antiadiabatic polaron is always heavier than the adiabatic polarons
but some peculiar points, resolved as the minima of the curves displayed in figure 1(b), show
decreasing g-values on decreasing the degree of adiabaticity. Then, an antiadiabatic polaron
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Figure 1. (a) Polaron masses (in units of the bare band
electron mass) versus g in adiabatic and antiadiabatic
regimes with high-frequency optical phonons: ω̄ =
158 meV. (b) The second derivative of the logarithm of
the effective mass with respect to g.

Figure 2. (a) Polaron masses (in units of the bare band
electron mass) versus g in adiabatic and antiadiabatic
regimes. The characteristic frequency of the optical
phonons is: ω̄ = 79 meV. (b) The second derivative of
the logarithm of the effective mass with respect to g.

may already be self-trapped at g � 2.7, weighing meff � 14, while an extreme adiabatic
polaron self-traps only at g � 3.8, with meff � 123. The correctness of our perturbative
approach is monitored by the λ- and α-values which are larger than one at all the displayed
points consistently with the assumption on the existence of small polarons. In the intermediate
adiabatic cases t = 100 and 50 meV, we find meff � 73 at g � 3.5 and meff � 40 at g � 3.3
respectively. Thus, a 2D honeycomb net seems to sustain mobile adiabatic polarons in a window
of strong-coupling regimes approximately defined by 2.5 � g � 3.3. In figure 2, the phonon
frequencies are still high, although much reduced with respect to figure 1. As a main effect the
polaron masses are roughly doubled while the peculiar minima of the second derivative of the
logarithm of the effective mass (figure 2(b)) do not shift substantially versus g with respect to
the corresponding cases in figure 1(b). To emphasize the role of the lattice structure we have
compared the adiabatic polaron (with t = 100 meV) in the present 2D honeycomb net with the
previously investigated [20] square lattice. As an example, provided that: (i) the same overall
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(a) (b)

Figure 3. (a) Polaron masses (in units of the bare band electron mass) versus g in three adiabatic
regimes. The electron couples here to the acoustic phonon branch. (b) The second derivative of
the logarithm of the effective mass with respect to g.

e–ph coupling g = 3.38 is taken, (ii) the same values of intramolecular and intermolecular
force constants are assumed (ω0 = 50 meV and ω1 = 25 meV) and these values are consistent
with the strong-coupling perturbative method, we find meff � 140 for the honeycomb net
polaron against meff � 1200 for the square lattice. Also the intermediate adiabatic polaron
(t = 50 meV) behaves in a similar manner, with meff � 200 for the honeycomb net polaron
against meff � 1700 in the square lattice assuming the same input parameters as above. We
have also considered the effect of the acoustic branch of the phonon spectrum on the polaron
properties. In all cases, with different degrees of adiabaticity, the minima of the second
derivative (figure 3(b)) occur at much lower g-values than for optical polarons. However, no
physical meaning can be attached to these values since they are well outside the range of validity
of the Lang–Firsov-based perturbative method. When the method holds (g > 2.5) no peculiar
point can be resolved in the polaron behaviour versus g, which is anyway characterized by a
huge mass renormalization. Figure 3 has been provided also to show that the occurrence of
distinctive features in the mass or mass derivative curves, far from being a cogent criterion for
the self-trapping event, just indicates a trend which needs to be corroborated by the analysis
of other independent quantities.

3. Conclusions

We have developed a perturbative study of the molecular crystal model assuming the existence
of strong electron–phonon coupling conditions which favour the formation of small polarons.
The Lang–Firsov method permits us to calculate the mass renormalization for specific
structures once the phonon spectrum is known. Rather than applying the model to real systems
as was previously done for simple lattices, we have examined whether alternative structures
such as the 2D honeycomb net may host polarons which are both small and mobile. In fact
we have found that adiabatic small polarons are lighter by roughly a factor of eight than in
the square lattice once the same input parameters are assumed. Adiabatic polarons have been
studied as a function of the e–ph coupling and distinctive points in the mass behaviour (versusg)
have been selected and placed in relation with a possible occurrence of the self-trapping event.
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Although not ultimate, this criterion seems plausible provided that such ‘self-trapping g-
points’ are obviously well within the range of applicability of the Lang–Firsov scheme. We
find that small optical polarons in the honeycomb net can self-trap if the electron–lattice system
couples in the range 3 < g < 4. The exact location of the transition depends on the adiabaticity
parameter with intermediate adiabatic polarons lying in the lower portion of that range. Our
results suggest that adiabatic optical polarons can be mobile in the honeycomb net although a
strong-coupling regime holds. The small-polaron effective mass is of order �5–50 times the
bare band mass before the self-trapping point is attained, with more adiabatic polarons being
lighter once the e–ph coupling is fixed.

Acknowledgment

This work was done at the Coop ‘Il Ratano’ in Trequanda (Siena).

References

[1] Mott N F 1987 Conduction in Non-Crystalline Materials (Oxford: Clarendon)
[2] Heeger A J, Kivelson S, Schrieffer J R and Su W-P 1988 Rev. Mod. Phys. 60 781
[3] Devreese J T 1996 Polarons Encyclopedia of Applied Physics vol 14 (New York: VCH) p 383
[4] Wipf H, Magerl A, Shapiro S M, Satija S K and Thomlinson W 1981 Phys. Rev. Lett. 46 947
[5] Scharf R and Bishop A R 1991 Phys. Rev. A 43 6535
[6] Molina M I and Tsironis G P 1993 Phys. Rev. B 47 15 330
[7] Gupta B C and Lee S B 2001 Phys. Rev. B 63 144302
[8] Dunlap D H, Kenkre V M and Reineker P 1993 Phys. Rev. B 47 14 842
[9] Holstein T 1959 Ann. Phys., NY 8 325

Holstein T 1959 Ann. Phys., NY 8 343
[10] Toyozawa Y 1961 Prog. Theor. Phys. 26 29
[11] Emin D and Holstein T 1976 Phys. Rev. Lett. 36 323
[12] De Raedt H and Lagendijk A 1983 Phys. Rev. B 27 6097

De Raedt H and Lagendijk A 1984 Phys. Rev. B 30 1671
[13] Kopidakis G, Soukoulis C M and Economou E N 1995 Phys. Rev. B 51 15 038
[14] La Magna A and Pucci R 1996 Phys. Rev. B 53 8449
[15] Jeckelmann E and White S R 1998 Phys. Rev. B 57 6376
[16] de Mello E V and Ranninger J 1998 Phys. Rev. B 58 9098
[17] Robin J M 1998 Phys. Rev. B 58 14 335
[18] Alexandrov A S and Kornilovitch P E 1999 Phys. Rev. Lett. 82 807
[19] Romero A H, Brown D W and Lindenberg K 1999 Phys. Rev. B 59 13 728

Romero A H, Brown D W and Lindenberg K 1999 Phys. Rev. 60 14 080
[20] Zoli M 2000 Phys. Rev. B 61 14 523
[21] Zolotaryuk Y, Christiansen P L and Rasmussen J J 1998 Phys. Rev. B 58 14 305
[22] Voulgarakis N K and Tsironis G P 2001 Phys. Rev. B 63 14 302
[23] Lang I J and Firsov Y A 1963 Sov. Phys.–JETP 16 1301
[24] Gogolin A A 1981 Phys. Status Solidi b 103 397
[25] Firsov Y A, Kabanov V V, Kudinov E K and Alexandrov A S 1999 Phys. Rev. B 59 12 132
[26] Zoli M 1998 Phys. Rev. B 57 10 555
[27] Kornilovitch P E and Pike E R 1997 Phys. Rev. B 55 R8634
[28] Zoli M 1999 Physica C 324 71
[29] Zoli M 2000 J. Phys.: Condens. Matter 12 2783
[30] Farias G A, da Costa W B and Peeters F M 1996 Phys. Rev. B 54 12 835
[31] Emin D 1996 Phys. Rev. B 53 1260
[32] de Mello E V and Ranninger J 1997 Phys. Rev. B 55 14 872

de Mello E V and Ranninger J 1999 Phys. Rev. B 59 12 135
[33] Alexandrov A S and Mott N F 1994 Rep. Prog. Phys. 57 1197
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